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SUMMARY 
A two-dimensional, transient, finite difference technique based on a volume fraction specification of the free 
surface position and accounting for the effects of surface tension is shown to accurately predict the initial 
motion of large cylindrical and spherical bubbles. The predictions compare very favourably with the 
experimental data of Walters and Davidson. The initial acceleration of cylindrical and spherical bubbles is 
properly predicted as g and 2g respectively. The penetration of a tongue of liquid from below is the dominant 
process by which large deformations from the original shape take place and is well predicted by the model in 
both cases. For the spherical case the eventual transition into a toroidal bubble is demonstrated and the 
circulation associated with a rising toroidal bubble as a function of its volume upon release is shown to agree 
very well with experiments. Iterative linear equation-solving techniques applicable to the special nature of the 
linear system resulting from such a free surface specification are surveyed and a simple Jacobi iteration based 
on red-black ordering is found to perform well. The impact of the free surface on the relaxation of the linear 
system and the convergence criteria is also explored. 
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INTRODUCTION 

Like most numerical work requiring ‘large’ digital computers, the study of bubble dynamics in the 
numerical laboratory is a relatively recent frontier in fluid dynamics. Earlier efforts to study this 
important class of free surface flows have been largely confined to experimental and analytical 
studies. In this paper, interest is focused on the initial motion of cylindrical and spherical bubbles 
released from rest in quiescent fluids. Furthermore, these bubbles are considered large (> 1 cm 
diameter) and undergo substantial deformations shortly after release. Some experimental data are 
available against which the model’s performance can be evaluated. 

The bubble dynamics literature is very extensive because of the importance of bubbles in many 
chemical and heat transfer processes. However, research has been largely confined to rather small 
bubbles (< 5 mm diameter) where surface tension and viscous effects are very important; for 
example, Harper provides a comprehensive review of small-bubble behaviour. As the bubble’s 
radius a, increases, buoyant forces become more dominant and the hydrostatic pressure gradient 
becomes important. This paper deals with large air bubbles in water where the Eotvos number 
E =  100-1OOO. Large bubbles are relatively unstable owing to the rapid growth of disturbances 
on their surfaces. They are of interest in such applications as underwater  detonation^,^^ 
fluidized beds: nuclear reactor accident a n a l y ~ i s ~ . ~  and the blow-out of undersea oilwells.’ 

In order to place the existing literature and current research in context, consider the three stages 
of motion of a large cylindrical bubble released from rest in a quiescent liquid. Initially, the bubble 
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accelerates upwards under the force of buoyancy with little change from its original cylindrical 
shape. During the second stage it undergoes large deformations until it forms a cylindrical cap 
(and, perhaps, some small satellite bubbles) which eventually rises at some steady velocity during 
the final stage. Large spherical bubbles behave similarly but produce a spherical cap and/or a 
toroidal bubble in the final flow stage. This paper is concerned with the motion of large bubbles 
during the first and second stages. No attempt is made to model steady cylindrical or spherical cap 
bubbles. 

Experimental literature 

The experiments most relevant to this paper are those of Walters and Davidson' concerned 
with cylindrical bubbles and those of Walters and Davidsong dealing with spherical bubbles. They 
provide position and deformation data versus time for the initial stages of motion. As well, they 
contain photographs of the bubbles well into the large-deformation stage. These works provide 
the primary source of experimental data against which the model will be compared and as such 
will be discussed in more detail later. 

Davies and Taylor" were the first to explain the observed spherical upper surface of spherical 
cap bubbles as a balance between the dynamics of the flow and gravity which preserves the 
constant-pressure condition. Experiments with rising spherical cap bubbles led to the relationship 
U = S , / ( g a )  for the terminal velocity of spherical cap bubbles. Studies of the wake structure 
behind steadily rising cylindrical and spherical cap bubbles have been reported in several 
papers.' l-I4 Bessler and Littmanl' produced cylindrical cap bubbles by the same technique as 
Walters and Davidson' but report no data until the terminal velocity had been reached. However, 
the steady flow stage focused on in these works is not the main interest, or strength, of the current 
model. 

Several papers dealing with large-bubble dynamics examine the continuous ejection of gas from 
a submerged orifice. This is a much more complicated problem because it contains a bubble 
growth process, a departure process and significant bubble-to-bubble interaction. However, since 
the large-bubble literature is quite limited, the work of Chen and Dhir,6 Topham7 and Marble 
et aL5 should also be mentioned here. 

Theoretical literature 

The most noteworthy theoretical treatment of the initial motion of large bubbles is the work of 
Walters and Da~idson.'.~ Their analysis is based on defining the velocity potential for flow 
around a cylindrical/spherical bubble. This velocity potential is an infinite series, with the first 
term being the well-known potential for a solid cylinder/sphere in a uniform stream. The 
remaining terms of the series have time-dependent coefficients. The basis of their methods is to 
determine these coefficients such that the condition of uniform pressure at the bubble surface is 
satisfied. They found that the initial acceleration of a cylindrical bubble released from rest is g 
while for a spherical bubble it is 29. Also, a tongue of liquid is found to penetrate the bottom of the 
bubble. Because of the truncation of the infinite series defining the velocity potential, the analysis is 
only valid for small deviations from the original shape or until the bubble moves about one bubble 
radius. 

Virtually every other theoretical treatment of large-bubble dynamics is concerned with the 
terminal velocity or wake structure of cylindrical and spherical cap bubbles. Since these are 
concerned only with the final, steady stage of motion, individual contributions will not be detailed 
here. A review of these phenomena has been provided by Wegener and Parlange.I6 
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Numerical literature 

Numerical investigations of large-bubble movement through liquids are quite recent. Several 
approachs are apparent in the literature. The first is the vortex-in-cell method. This technique has 
evolved from the original Lagrangian vortex interaction calculations of Rosenhead’’ to the 
modern vortex-in-cell technique where the vortex elements are moved by solving the stream 
function-vorticity equation on an underlying grid. The use of an underlying grid requires 
only O(N 1nN) operations per time step whereas the original technique of summing over each 
vortex element requires O ( N Z )  operations per time step” (N being both the number of cells and 
the number of vortex elements since they are of the same order for simulations with highly 
distorted surfaces). In bubble calculations the density interface is represented by a series of point 
vortices whose strength is determined by the vorticity-generating misalignment of the pressure 
and density gradients. Simulations by Brecht and Ferrantelg and previously by Meng and 
Thomson” chronicle an impressive range of bubble movement predictions, including important 
studies of various bubble-to-bubble interactions. However, they consider quite low density ratios 
(maximum p1 / p 2  = 32) while the current research is concerned with air-water simulations where 

Another approach is boundary-fitting finite difference techniques where an orthogonal grid is 
generated to give a constant co-ordinate value on the bubble surface. This formulation makes the 
free surface boundary condition relatively simple to apply since co-ordinate lines are perpendicu- 
lar to the surface and all control volumes are either completely full or completely empty. Ryskin 
and Lea1z1.22 describe such a technique applied to the steady flow around a spherical cap bubble 
using a stream function-vorticity formulation. They restricted their study to the steady flow stage 
and therefore did not model the initial stages of motion. The maximum Reynolds number 
considered was 200. 

An alternative approach, used in this paper, makes no attempt to fit the co-ordinate system to 
the bubble surface but allows the free surface to assume any orientation relative to the co-ordinate 
lines. This makes the free surface boundary condition more difficult to assign and results in some 
partially full control volumes. The SOLA-VOF code23 descended from the MACz4 (marker-and- 
cell) technique uses this approach. The advantages are more generality in the free surface 
configuration and elimination of the curvilinear orthogonal grid as an unknown in the solution. 
The difficulties arise in convecting the free surface position in a physically realistic manner. 

p 1 / p z z  1000. 

ANALYSIS 

The model in this paper uses the SOLA-VOFz3 approach to determine the position of the air- 
water interface. It is a finite difference technique which advances explicitly in time and uses a 
pressure correction technique to drive V.u to zero. All simulations in this paper were done on a 
uniform grid (6x = 6y = constant). 

Full control volumes 

The following discretized form of the Navier-Stokes equations is used: 

6t 
u;; = 6t C” - 6t V;ij - -( P;;: ’ - p;; 1). 

6Y P Y U  
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The convective terms have been grouped into Cij and the viscous terms have been grouped into 
K j .  The viscous terms are always central differenced while the differencing scheme for the 
convection term is varied between central and upwind differencing depending upon the strength of 
the convection. This equation set is not closed because continuity has not yet been imposed. This is 
done by first estimating the velocity field and then correcting it by adjusting the pressure field to 
satisfy continuity. Details of this process can be found in Reference 25. The result is a linear 
equation for the pressure correction terms: 

This equation can be written for each control volume in the solution domain and contains five 
unknown pressure corrections. 

Surface control volumes 

The above procedure is valid only for control volumes that are full of liquid. Since this code has 
the capability of tracking free surfaces, control volumes containing free surfaces must apply the 
free surface boundary condition in the interior of the solution domain. The free surface boundary 
condition is 

where ri is normal to the free surface and s,, is the normal stress in that direction. At the surface this 
means that 

where Pg is the bubble gas pressure, lc is the local surface curvature, o is the surface tension and P, is 
the liquid side pressure. However, since 

the viscous term can be neglected, giving 

P, = Pg + K d .  (7) 
The goal is to set the surface cell pressure such that it will result in a surface pressure of P, when 
linearly interpolated to the neighbouring full cell (see Figure 1). We want 

p"j+ = qijPs+(l -qij)P;;l. 

However, the linear system is in AP, so to express (8) in a form consistent with full cells, it is written 
as 

APij+(qij- l)AP,,= qijP, + (1  -vij)Pi,- p"j. (9) 
The solution of (3) and (9) is the largest task facing the model. Several techniques have been 

pursued in the light of the special problems imposed by the free surface. The first influence of 
equation (9) is that it renders the coefficient matrix asymmetric. This increases the storage 
requirements greatly and rules out solvers which rely on symmetric coefficient matrices. The 
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Figure 1. Surface pressure interpolation technique (qij = d/b) 

second and most serious consequence of (9) is that it introduces severe numerical instabilities when 
qij is greater than two by violating diagonal dominance. A full discussion of the solution 
techniques implemented in the light of these problems is provided below. 

Convecting the free surface 

The free surface position is defined in terms of a volume fraction F, which is unity in full control 
volumes, zero in empty control volumes and takes intermediate values in surface control volumes. 
The process of updating F at the end of each time step convects the free surface and is governed by 

aF aF aF 
-+u-+ u-=o. at  ax ay 

Numerical interpretation of this equation must ensure that the interface remains sharply defined 
and therefore a special donor-acceptor method is used. A good discussion of this technique can be 
found in Reference 26. 

Stability considerations 

The linear interpolation which specifies the free surface boundary condition can lead to a 
numerical instability when iteratively solving the linear equation set. If qij is greater than two, 
diagonal dominance will be lost, causing the iterative scheme to diverge. In this work a relaxation 
factor of opq=0.9/(qij- 1) is applied to all cells where qij>2. Note that since it is the AP,, 
coefficient and not the APij coefficient that creates the instability, the relaxation is applied in 
cell pq. All other cells are not relaxed in this solution. 
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Ordering schemes 

A large portion of the computational effort is the solution of equations (3) and (9) for the 
pressure correction AP. Equation (3) has five non-zero members in each row of the coefficient 
matrix. The structure of the coefficient matrix is dependent on the ordering ~cheme.~' Figure 2 
shows a very small grid (nx=7, ny=6) with the control volumes numbered according to three 
different ordering schemes. By using ordering schemes to change the structure of the coefficient 
matrix, more efficient iterative techniques may be implemented. 

Natural ordering. First consider natural ordering. Since the differencing molecule yields only 
five unknowns per equation and the order of the set is typically lo4, the coefficient matrix is 
obviously very sparse. For an nx x ny grid, all elements aij are zero except when j = i ,  j = i - 1, 
j = i +  1, j = i - n x  andj=i+nx. Therefore A has a pentadiagonal structure with a half-bandwidth 
of nx. 

AAP=b.  (1 1) 
Because equation (3) is normalized, the diagonal members of A are all unity. 

ordering, it may be partitioned as 
Red-black point ordering. When the coefficient matrix is constructed using red-black point 

The submatrices on the diagonal are identity matrices and G, and G, each have four non-zero 
members per row. Because of this partitioning, the solution vector A P  is also partitioned into 
AP, and AP,, the red and black solutions. This ordering scheme derives its name from the 
checkerboard-like pattern that the two solutions create. The structure of the partitioned 
coefficient matrix arises from the fact that no red control volume has another red control volume 
as its neighbour. Therefore each half of the solution is explicit and they are linked through G,  
and G b .  

Red-black line ordering. Red-black line ordering allows a similar partitioning (equation (13)), 
but HI and H, are tridiagonal matrices and GI and G, each have only two members per row. 

E 25 
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Each half of the solution can be solved by a fast direct method (tridiagonal matrix algorithm) and 
it is linked more weakly with the other half of the solution since G, and Gb each have only two 
members per row. 

Basic iterative methods 

Now that the ordering schemes have been discussed, some basic iterative methods can be 
introduced. Not all of these basic iterative methods are used with all possible ordering schemes, 
but several combinations are discussed and compared in this paper. 

Jacobi iterative scheme. The simplest of all iterative schemes is the Jacobi iterative technique 
shown in equation (14). Every member of the solution is updated based entirely on the solution at 
the previous iteration. The disadvantage of this technique is that its explicit nature leads to rather 
slow convergence. However, in terms of vectorization it is very attractive since it is directly 
vectorizable. The trade-off between poor convergence properties and amiability to vector 
hardware will determine this method's utility. 

APm+' =b-(A-I)APm. (14) 

Gauss-Seidel iterative scheme. The next technique is the Gauss-Seidel iterative scheme. In this 
scheme, two of the four neighbour terms in each equation are evaluated at the current iteration. 
This makes it converge much more quickly than the Jacobi technique since it is more implicit. 
However, it is much less suitable for vectorization because of its recursive nature. It is a very 
attractive method on scalar hardware using the natural ordering scheme, since it merely involves 
stepping through the grid and updating the solution based on the current state of the solution 
vector. 

APm+l  =(I + CL)- '(b- CUAP"), (15) 
where C, is the lower triangular portion of A and C,, is the upper triangular portion of A. 

Tridiagonal matrix algorithm. The tridiagonal matrix algorithm (TDMA) is not in itself an 
iterative technique. It is a direct solver of a special class of linear systems having tridiagonal 
coefficient matrices. However, if we make each iteration a tridiagonal problem by moving the 
contribution of two neighbours into the constant vector, an iterative technique can be developed 
that has good convergence properties for many problems. Equation (16) describes this method. 

AP"' = K -  (b - C, AP"), 

where A = K + C, and K is the tridiagonal portion of A. Information is transmitted along the lines 
that define the TDMA in one iteration whereas information is transmitted across the TDMA lines 
at a rate of one grid cell per iteration. Therefore alternating the sweeping direction usually speeds 
up the solution substantially.28 

Speed comparison 

To compare the speed of the five solvers, the case of a cylindrical bubble released from rest is 
used. A complete description of these simulations is presented in the next section. The solution 
domain is 61 x 160 control volumes, resulting in a matrix of order 9760, and the first 25 time steps 
are benchmarked to produce Table I. The convergence criterion E for these runs is and the 
time step is 00002 s. Quantities in square brackets are relative to the Jacobi scheme with red-black 
ordering (method IV in Table I). 
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The set-up time in Table I includes such things as zeroing the solution vector(s), initializing the 
bit mask vectors for full cells and red-black cells if applicable, loading the relaxation vectors, pre- 
relaxing the coefficient matrix and constant vector and loading the vectors required for the 
convergence check. For those techniques which use the tridiagonal matrix algorithm, the set-up 
time includes the coefficient matrix decomposition stage, which explains the large set-up times for 
methods I11 and V. 

The time per iteration includes both the solution and convergence check stages. Methods using 
the easily vectorizable Jacobi iterative technique (I and IV) are the fastest running. Two factors 
give rise to the differences between methods I and IV. Method IV is made slightly slower by the 
fact that the vector length is half that of method I. However, this is more than offset by the fact that 
the convergence check is usually half as large for method IV. The large time for method I1 results 
from the solution stage being only 50% vectorized (the convergence check is 100% vectorized). 

The floating point operations per iteration are obtained by counting the operations in the 
iteration loop of the solver. The actual tridiagonal matrix solver in methods I11 and V is from the 
MAGEVZ9 library of subroutines and the number of floating point operations does not vary 
linearly with N as for the other methods. The rate in Mflsps is simply calculated from the time per 
iteration and the number of operations. A two-pipe Cyber 205 was used for this study, and with no 
linked triads, the maximum speed realizable using single precision is 100 Mflops. Degradation of 
this rate is due to vectorizability of different methods, vector set-up time and scalar overhead such 
as incrementing the iteration counter and deciding whether to iterate again. 

A favourable method must not only be able to complete an iteration quickly but must also be 
able to obtain a converged solution in a competitive number of iterations. These two factors 
combine to yield the total time for this particular benchmark solution. Whereas the running speed 
of each method is basically independent of the case being run, the number of iterations required 
may depend heavily on the details of the problem being solved. The code is structured so that the 
assembly of the coefficient matrix and constant vector is independent of the solution method 
selected. This makes it very easy to change solution methods. This capability is strongly 
recommended, since different solvers may perform better in different cases. On the basis of this 
study, the favoured method for this application is the Jacobi iterative technique based on the 
red-black point-ordering scheme. 

Relaxation technique 

Methods I, I1 and IV use pre-relaxation to slightly reduce the number of floating point 
operations inside the iteration loop. Pre-relaxation is the practice of performing a portion of the 
relaxation procedure before the solution by relaxing the coefficient matrix and constant vectors. 
Illustrating this with method I: 

post-relaxation 

pre-relaxation 
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The quantities in square brackets can be calculated before iteration begins. Therefore inside the 
iteration loop this technique saves one floating point operation per control volume, namely the 
WAP"+('/~) product in equation (18). 

Convergence criteria 

A problem with iterative linear equation solvers is deciding when to stop the iteration procedure 
and accept the current solution. This decision demands a large part of the total time of many 
iterative techniques. Also, the presence of relaxation factors in the solution must be accounted for 
by the convergence criteria. To illustrate the formulation of the convergence criteria, consider the 
Jacobi technique based on red-black point ordering and using the pre-relaxation technique. 

APyf(112)=o,b,-w,GbAP:, (21) 

AP:" =APy+"/z'+(l  -w,)APy, (22) 

Assume that AP = [APT", AP;lT represents a converged solution. Then the residuals can be 
calculated from 

where by+' and br+'  should ideally equal b, and b,. Multiplying (25) and (26) by w, and 
respectively, subtracting from (21) and (22) and recalling the definition of b, and b, gives 

The difference on the right-hand side of this expression is the error in divergence at the (m + 1)th 
iteration. This can now be compared with the allowable relative volume flow imbalance E to give 
the convergence criteria 

The red-black ordering scheme makes it possible to save computation time during the 
convergence check. Note that (29) is certain to be satisfied in any control volume where a= 1. 
Therefore criterion (30) is checked first, and only if it is satisfied is there any need to check (29). This 
means that until very close to convergence only half of the solution needs to be checked for 
convergence. 

Note that the convergence check described above is fully vectorizable. However, since only one 
control volume need violate the convergence criteria in order to demand another iteration, it may 
seem more efficient to do a fully scalar convergence check and proceed to the next iteration upon 
the first violation. Near the beginning of the iterative process, where many control volumes violate 



INITIAL MOTION OF LARGE BUBBLES 119 

the criteria, this would undoubtedly be faster. However, near convergence, when only a few 
stubborn residuals remain, it depends on where they are positioned in the solution vector as to 
which method would be fastest. This is impossible to predict a priori in any general way, so the 
fully vectorized convergence check is retained. 

The fact that this code must evaluate the void fraction in each control volume in order to track 
the movement of the free surface places extra importance on knowing the error in the solution. The 
routine which updates the void fraction in each control volume at the end of each time step does so 
by calculating the imbalance of mass flux across the control volume faces. The convergence 
criteria allow a small imbalance in mass flow to occur. This allowable divergence must be 
considered in updating the void fraction or new, fictitious void regions may appear merely by 
virtue of non-zero divergence. Therefore the minimum void fraction amin, which is allowed to 
appear in a previously full cell is E.  

RESULTS AND DISCUSSIONS 

Cylindrical bubbles 

The experiments performed by Walters and Davidsod provide a good test of the model's 
capabilities. The initial conditions are achieved by suddenly withdrawing a 50.8 mm diameter 
sleeve from between two vertical Perspex plates 9.5 mm apart, 254 mm wide and 1.2 m high. The 
computational domain covers the entire width of the tank but is restricted in height to 0.3387 m, 
resulting in a 61 x 160 grid having 6x = 6y = 21 16 mm. The rather narrow width of the column in 
these experiments is far from the assumption of an infinite expanse of fluid. Studies show that the 
terminal velocity is reduced by decreasing the channel width,14 but no work is available on its 
influence during the initial stages of motion. Walters and Davidson' state that the initial bubble 
pressure is set so that there is 'minimal tendency for a volume change to occur on release'. This is 
achieved in the model by initializing the bubble pressure to be equal to the hydrostatic pressure at 
the bubble centroid at t =O. Thereafter the bubble pressure is recalculated at each time step 
according to the isentropic expansion/compression of air in response to changes in bubble volume 
resulting from updating the surface position. The present work is only intended to model the first 
two stages of bubble motion since the experimental data8 are restricted to these stages. 

Initial stage. During the initial non-deforming motion the most important quantity to verify is 
the bubble's acceleration. This can be shown theoretically and has been confirmed experi- 
mentally8 to be equal to the gravitational acceleration g. Figure 3, which shows the bubble 
position versus time obtained from Walters and Davidson,' confirms that the model properly 
predicts this initial acceleration. Note that for T =  t J(g/ao) > 1 the upward motion begins to 
deviate from constant acceleration as the second phase of motion is approached. 

Deformation stage. The second phase of motion, transition to a cylindrical cap, begins with the 
penetration of a tongue of liquid into the bottom surface of the bubble. This is well predicted by 
the model and begins at Tz0.6. The predicted streamlines for both a stationary and moving 
observer are shown at four times during the transition phase in Figure 4. Figure 5 shows the 
penetration quantitatively by plotting the vertical diameter of the bubble versus time for the 
period over which experimental data were reported. Also shown in this figure is a curve 
determined from the potential flow model of Walters and Davidson.' The data in Figures 3 and 5 
only represent the initial stages of large deformation. Beyond T =  1.4 the photographic data 
reported by the experimenters must be used. Figure 6 shows a comparison of the photographs 
with the model predictions. The photographs clearly show that in the later stages of transition to a 
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0.0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

t *ao 

Figure 3. Position versus time for a cylindrical bubble released from rest into a quiescent liquid. Experimental data of 
Walters and Davidson* 

steady flow the penetration of liquid from below forms a trailing skirt. In frames 6 and 7 the 
experimental data show some necking of this trailing skirt. This necking is quite important 
because it eventually becomes complete and results in a cylindrical cap with two small bubbles in 
its wake. This shedding is the mechanism by which vorticity is generated in the flow as it 
transforms from potential flow around a cylinder to fully separated flow behind a cylindrical cap. 

The model results do not show such distinct shedding. Very small bubbles are shed from the 
trailing edge of the skirt but not from a clear necking process. However, the formation of a 
cylindrical cap with several small bubbles in the wake is very clear in frame 8. Other experiments 
using the same bubble injection techniq~e '~ reported no trailing bubbles in the wake. However, 
they only reported data after the cylindrical caps had reached terminal velocity. Since the wake is 
quite turbulent for an air-water bubble of this size (Re z 26 700), the shed bubbles likely recirculate 
until they coalesce with the cap through its wavy floor and therefore do not consistently appear in 
the fully developed wake. Model development has not been pursued to the point where it is 
reasonable to expect turbulent flow in the wake to be accurately predicted since the model has no 
capacity to model turbulence at this time. 

Cylindrical approximation. Recall that the 'cylindrical' bubbles in the experiments were 
contained between two plates 9.5 mm apart whereas the model is truly two-dimensional. A 
discussion of wall effects is given in Reference 30 but only as they pertain to the terminal velocity. 
It was concluded that two-dimensional models underpredict the rise velocity of cylindrical 
bubbles created between parallel plates. Instability makes it impossible to create truly cylindrical 
bubbles in the laboratory. It is likely that the 'laboratory' cylindrical bubble has a more stable skirt 
than the truly two-dimensional bubble owing to the extra curvature present in the third 
dimension. It is not clear whether the differences in the shedding process are a result of deficiencies 
in the model or wall effects in the experiments. 

Surface tension. The specification of surface tension in the surface boundary condition is very 
important to the success of this model. The effects of attempting a prediction without the surface 
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Figure 4. Streamfunction contours for the initial motion of a cylindrical bubble released from rest in a quiescent liquid 
(uniform contour intervals): right side, stationary observer, left side, observer on bubble 
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Figure 5. Vertical diameter versus time for a cylindrical bubble released from rest into a quiescent liquid. Experimental 
data of Walters and Davidson8 

Figure 6. Cylindrical bubble predictions compared to photographs of Walters and Davidson' 

tension model can be seen in Figure 7. The first difference was observed at the 75 ms point where a 
small bump began to grow on the top surface of the bubble. This bump continues to grow in the 
form of a disturbance propagating down the sides of the bubble. This behaviour is very different 
from the experimental results where the upper surface remains cylindrical. Implementing the 
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Figure 7. Effect of neglecting surface tension on cylindrical bubble predictions 
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Figure 8. Position versus time for a spherical bubble released from rest into a quiescent fluid. Experimental data of Walters 

and Davidsong 

surface tension model eliminated the initial formation of this disturbance, allowing the upper 
surface to remain cylindrical. Even though surface tension is a relatively small force when the 
bubble size is large, it is vital to successful solutions, since very small disturbances can otherwise 
grow unchecked and dominate the features of the bubble. 
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Grid independence. To investigate the grid independence of the current solution, a much finer 
grid was developed for the case of the rising cylindrical bubble. A 153 x 408 uniform grid yielding a 
grid resolution of Sx = Sy = 0.836 mm and an equation set of order 62 424 was run for the first 
40 ms (T=0.79) of the simulation and showed no appreciable difference in the results up to that 
point. 
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Figure 9. Prediction of initial motion of spherical bubbles released from rest into a quiescent liquid (a) 3000 ml bubble; 
(b) 110 ml bubble (shown double size) 
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Spherical bubbles 

Walters and Davidson’ describe a similar study of initially spherical bubbles. Spherical bubbles 
ranging in volume from 110 to 3000 ml were released into a 45.7 cm square by 0.91 m high tank. 
The desired initial condition of a spherical bubble released from rest into a quiescent fluid was 
attained by bursting inflated balloons of various volumes with a remotely actuated needle while 
they were submerged in an otherwise liquid-filled container. Upon bursting, the rigidity of the 
container maintained the constant volume of the bubble. 

Initial stage. As with the two-dimensional work, the experimenters reported vertical displace- 
ment of the bubble versus time (see Figure 8). Again the model results match the experimental data 
very well. Note that the initial acceleration of a spherical bubble released from rest is 29. 

Deformation stage. The penetrating liquid tongue is much harder to see in the photographs’ 
because it is obscured by the resulting skirt. This made a direct comparison of the bubble 
silhouettes difficult in this case, so the model results alone are presented in Figure 9 for initial 
bubble volumes of 110 and 3000 ml. The beginning of the large-deformation stage is again best 
characterized by plotting the vertical diameter versus time as in Figure 10. The break-up resulting 
from penetration was into a very small spherical cap (often zero volume) and a rather large 
toroidal bubble.’ This contrasts with the cylindrical case where the cap inherited the bulk of the 
initial volume. Because of this, no modelling of spherical cap bubbles was done. This would 
require a different set of initial conditions. Experimental studies of spherical caps usually use a 
dump cup mechanism.1° 

Toroidal bubble formation 

The second part of Reference 9 is concerned with the formation of a toroidal bubble. Air was 
injected into a tank to form toroidal bubbles of various volumes. After the bubble formed, by 
penetration of a tongue of liquid from below, Walters and Davidson measured the circulation 
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Figure 10. Vertical diameter versus time for a spherical bubble released from rest into a quiescent liquid. Experimental 

data of Walters and Davidsong 
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Figure 11. Circulation associated with toroidal bubble versus bubble volume. Experimental data of Walters and 
Davidsong 

associated with the bubble by assuming it to be the core of a ring vortex. They found this 
circulation to be essentially constant as the bubble rose, with its ring diameter increasing and 
toroid diameter decreasing. Using the numerical technique described in this paper, spherical 
bubbles of various volumes (comparable to those in the experiments) were released and allowed to 
form into toroids. The circulation around these bubbles is easily computed from the velocity field 
and was found to be essentially constant after the toroid was formed. The Walters and Davidson9 
data for circulation versus the square root of the bubble volume are shown in Figure 11 along with 
the model results. 

CONCLUSIONS 

The present finite difference model has been shown to effectively predict the initial motion of large 
gas bubbles released from rest in quiescent fluids. The impact of having a free surface in the interior 
of the solution domain has been considered in formulating the convergence criteria and selecting 
iterative equation solvers. Further work is required to model the turbulent wake behind rising gas 
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bubbles, which occurs later in their existence, and allow physically realistic break-up and 
coalescence to occur. 
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APPENDIX: NOMENCLATURE 

A 
a 
b 
C 
D 
E 
F 
9 
G 
H 
I 
K 
nx 
nY 
N 
P 
Re 
S 

t 
T 

U 
U 

V 

coefficient matrix 
radius of curvature of bubble’s leading edge 
constant vector 
portion of A 
divergence in control volume 
Eotvos number, 4gagpla 
volume fraction of fluid 
acceleration due to gravity 
submatrix of A 
submatrix of A 
identity matrix 
tridiagonal portion of A 
number of control volumes in x-direction 
number of control volumes in y-direction 
order of linear equation set 
pressure 
Reynolds number 
stress 
time 
dimensionless time t ,/(g/ao) 
velocity in x-direction 
dimensionless velocity 
velocity in y-direction 

Greek symbols 

a 
AP 
6X 
6Y 

r 
E 

K 

c1 
v 
P 

void fraction 
pressure correction 
grid spacing in x-direction 
grid spacing in y-direction 
convergence criterion 
circulation 
curvature 
dynamic viscosity 
interpolation factor 
liquid density 
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Q surface tension 
0 relaxation factor 

Subscripts 

b 
0 
ij 
L 
P4 
r 

U 
S 

black 
time zero 
control volume index 
lower 
control volume index 
red 
at surface 
upper 

Superscripts 

9 guess 
m iteration number 
m + (1/2) unrelaxed 
n time step number 
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